Laparoscopic caudate lobe resection: navigating the technical challenge

Ye Xin Koh¹, Ser Yee Lee¹,², Adrian K. H. Chiow³, Juinn Huar Kam¹,², Brian K. P. Goh¹,², Chung Yip Chan¹,²

¹Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore, Singapore; ²Duke-National University of Singapore (NUS) Medical School, 8 College Road, 169857, Singapore; ³Department of General Surgery, Hepatobiliary Service, Changi General Hospital, Singapore, Singapore

Correspondence to: Dr. Ser Yee Lee. The Academia, 20 College Road, Singapore 169856, Singapore. Email: lee.ser.yee@singhealth.com.sg.

Received: 12 February 2017; Accepted: 24 February 2017; Published: 17 March 2017.
doi: 10.21037/ales.2017.03.04

Introduction

The caudate lobe of the liver is an anatomically complex liver segment that poses significant technical and oncologic challenges to surgeons (1). Its unique and intimate location with the hepatic hilum and inferior vena cava (IVC) coupled its dual supply from both portal pedicles and direct venous drainage into the IVC make vascular control a particular challenge (Figure 1) (2). With the progress of laparoscopic liver resection (LLR), technically challenging liver resections are increasing performed laparoscopically with its attendant benefits of improved perioperative outcomes (3,4). However, these benefits have to be balanced against the risks of intraoperative bleeding and gas embolism, which are inherent in LLR of the caudate lobe.

Currently, LLR is recommended as the standard approach for the more laparoscopically accessible liver segments (3). The technical challenge in LLR for major hepatectomies have prompted experts in the field to propose a LLR difficulty scoring to guide the approach for surgery (5). However, the caudate lobe poses a unique challenge and its place in the difficulty scoring is not clearly defined. Herein we report our experience in LLR for caudate lobe lesions (Figure 2).

Surgical technique

The caudate lobe consists of 3 subsegments represented by the spigelian lobe on the left, the central paracaval portion, and the caudate process on the right (7). For isolated caudate lobe resections and concomitant lesions on the left hemiliver, our preference for positioning is the supine split leg position with the surgeon standing between the patient’s legs. The assistant holding the camera stands on the left side of the patient. The first assistant may be on patient’s right side during hilar dissection and on the left during parenchymal transection. For concomitant right hemiliver segments, our preference is for a 45-degree left decubitus position with the surgeon and the assistant holding the camera to be on the patient’s left side.

The central venous pressure is maintained at 5 mmHg. Pneumoperitoneum is induced with a direct trocar insertion technique and maintained at 12 mmHg to reduce the risk of gas embolism. We begin with an infraumbilical incision and Hassan technique is used to gain access into the abdomen. Usually four other trocars are placed, two in the right upper and two in the left upper quadrant. With the surgeon standing between the patient’s legs, a liver retractor is placed through the most lateral right upper quadrant port. The stomach is retracted to the patient’s left using the most lateral left upper quadrant port. A short profile 5 mm left subcostal port, is used to introduce a cotton tape for the Pringle maneuver. The gastrohepatic ligament is opened and attention directed to the porta hepatitis.

Where isolated caudate resection was performed, we begin with retraction of the caudate lobe anteriorly and superiorly. The caudate branches of the portal vein and hepatic artery are dissected, double clipped, and divided. We next proceed with a right sided retraction of the caudate lobe, this is to approach the short caudate veins to the vena cava, where are isolated, clipped and divided. Transection of the caudate lobe was usually performed with a combination of ultrasonic dissection and surgical staplers.
where necessary. The specimen was placed in a surgical bag and extracted through the umbilical port.

Where a combined left hemi-hepatectomy is performed, we use the anterior approach and only begin the caudate mobilization from the vena cava after the parenchyma transection of the hemiliver is completed. This approach facilitates access to the caudate process and good exposure of the IVC.

Clinical data

From January 2010 to January 2017, 6 consecutive patients underwent laparoscopic caudate lobectomy for hepatocellular carcinoma (HCC), colorectal liver metastases and fibrocystic lesion of the liver. Diagnoses and features of the lesions (i.e., tumor number and size) were obtained from the pathology records. The postoperative variables taken into consideration included complications and mortality up to 90 days post operation. Clinical and follow-up data of the 6 patients presented in Table 1. There were no postoperative complications and the patients were discharged well after a median stay of 4 days.

Discussion

Laparoscopic resection of caudate lobe is an uncommon procedure because of the complexity of the surgical dissection of the area and early involvement of IVC and
hilar structures by invasive lesions of the caudate lobe (8). Although open caudate lobectomy was increasingly reported in recent literature, laparoscopic approach of the caudate lobe is still cautiously navigated. The latest international consensus meeting in Morioka 2014 concluded with laparoscopic surgery being the standard of care for minor liver resections with laparoscopic major liver resection still in the explorative phase (3).

Traditionally, three common approaches of caudate lobe resection have been described: left, right, and anterior transparenchymal (9). The right approach is typically indicated for large lesions located in the caudate process and for resections in combined with right hepatectomies. This approach is technically arduous laparoscopically as it requires a complete mobilisation of the right lobe to the left side to expose the caudate hepatic veins.

The anterior transparenchymal approach is feasible in laparoscopic surgery, especially for concomitant hemi hepatectomies. This allows transparenchymal resection through the middle of the liver and when combined with suspension of the transection line, the modified Belghiti “hanging maneuver”, exposes the IVC and hence makes the approach to the caudate lobe more straightforward (10). The left sided approach for isolated caudate lobe resections is our choice of approach as the major vascular structures to the caudate are more easily seen on the left and sequential dissection and retraction enables more comprehensive control of the vascular structures and eventual access to the parenchymal transection of the caudate process (11-13).

The most hazardous technical challenges of laparoscopic caudate resection are first, the dissection of the anterior part of the IVC off the caudate lobe, more so in the case of large lesions; and the second is the parenchyma transection of the caudate process of which most part of it is a blind dissection. We utilize the paracaval plane as defined by landmarks of firstly, the bifurcation of the right portal vein, and the of the gall bladder fossa (Figure 1). We routinely prepare the pringle’s tourniquet and use an ultrasonic dissector and ultrasonic surgical aspirator for parenchyma transection. Bleeding arising from small vessels is treated using endoscopic clips, whereas suturing controls major vascular tears.

These 6 reported cases were favorable because the lesions were small and did not involve the IVC, all these factors predisposes to the success of a minimally invasive surgical approach. Furthermore, the success of the laparoscopic approach is in part to the improved visualization that the laparoscopic approach offers to this visually restricted.

| Table 1 Clinical and pathological data of the patients who underwent laparoscopic caudate lobe resection. |
|---|---|---|---|---|---|---|---|---|
| Age | Sex | Diagnosis | Tumour size | Margin (mm) | Surgery | Operative time (min) | Pringles | Blood loss (mL) | Post operative stay (days) | Post operative complication | Post operative stay (days) |
| 58 | M | HCC | 38 mm; poorly differentiated grade 3 | 1.0 | Caudate resection | 205 | Nil | Nil | 3 | Nil |
| 52 | M | HCC | 30 mm; moderately differentiated grade 2 | 3.0 | Caudate resection | 270 | No | No | 4 | Nil |
| 61 | M | Colorectal Liver metastases | 30 mm and 18mm colorectal liver metastases | 5.0 | Left Hepatectomy and caudate resection | 505 | No | 200 | 4 | 4 |
| 58 | M | HCC | 30 mm; moderately differentiated grade 2 | 2.5 | Caudate resection | 125 | 50 min | Nil | 4 | Nil |
| 30 | M | Fibropolycystic disease of liver | 35 mm | 5.0 | Left Hepatectomy and caudate resection | 400 | No | 300 | 5 | Nil |
| 72 | M | Multifocal HCC | Segment 7-28 mm poorly differentiated grade 3; Caudate; 7 mm poorly differentiated grade 3 | 1.0 | Segment 7 and caudate lobe resection | 400 | No | 200 | 4 | Nil |

M, male; F, female; HCC, hepatocellular carcinoma.
area. However, this advantage may be lost when dealing with large bulky tumors that are difficult to retract laparoscopically or those that involve the inferior vena cava or the porta hepatis, which demands expeditious control of these vascular structures in emergent situations.

In conclusion, laparoscopic resection of well-selected caudate lobe lesions is feasible and will bring about the perioperative benefits of minimally invasive surgery. We believe that the main challenge of a laparoscopic liver resection lies in the achieving a good exposure to perform a safe resection, and therefore the difficult location of the caudate lobe does not represent a contraindication. Nevertheless, these resections should be performed only in selected cases and by highly experienced laparoscopic and hepatobiliary surgeons.

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

doi: 10.21037/ales.2017.03.04.

Cite this article as: Koh YX, Lee SY, Chiow AK, Kam JH, Goh BK, Chan CY. Laparoscopic caudate lobe resection: navigating the technical challenge. Ann Laparosc Endosc Surg 2017;2:39.